Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein
نویسندگان
چکیده
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3' side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5' side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
منابع مشابه
Fanconi anemia signaling and Mus81 cooperate to safeguard development and crosslink repair
Individuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also ...
متن کاملCell cycle-dependent regulation of the nuclease activity of Mus81–Eme1/Mms4
The conserved heterodimeric endonuclease Mus81-Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81-Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after ...
متن کاملHypoxic stress facilitates acute activation and chronic downregulation of fanconi anemia proteins.
UNLABELLED Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and...
متن کاملStructure-Specific DNA Endonuclease Mus81/Eme1 Generates DNA Damage Caused by Chk1 Inactivation
The DNA-damage checkpoint kinase Chk1 is essential in higher eukaryotes due to its role in maintaining genome stability in proliferating cells. CHK1 gene deletion is embryonically lethal, and Chk1 inhibition in replicating cells causes cell-cycle defects that eventually lead to perturbed replication and replication-fork collapse, thus generating endogenous DNA damage. What is the cause of repli...
متن کاملFANCA ( Fanconi anaemia complementation group A )
Part of the FA complex with FANCC, FANCE, FANCF, and FANCG; this complex is only found in the nucleus. FANCA and FANCG form a complex in the cytoplasm, through a N-term FANCA (involving the nuclear localization signal) FANCG interaction; FANCC join the complex; phosphorylation of FANCA would induce its translocation into the nucleus.This FA complex translocates into the nucleus, where FANCE and...
متن کامل